VP160 RECITATION CLASS

FANG Yigao

July 22, 2020

Equilibrium

Elasticity

Equilibrium

$$F_{ext} = 0$$
 $au_{ext} = 0$

Center of Mass

$$r_{c} = \frac{\sum r_{i}m_{i}}{\sum m_{i}}$$

Elasticity

$$\textit{elastic modulus} = \frac{\textit{stress}}{\textit{strain}}$$

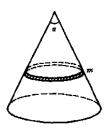
Young's modulus

$$Y = \frac{\frac{F_{\perp}}{A}}{\frac{\Delta I}{L}}$$

Bulk's modulus

$$B = -\frac{\Delta p}{\frac{\Delta v}{V}}$$

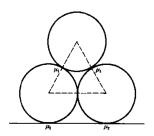
Shear modulus


$$\mathcal{S} = rac{rac{F_{\parallel}}{A}}{rac{X}{h}}$$

Methods

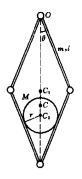
- 1. Equilibrium equations.(Usually four)
- 2. Virtual work
- 3. Infinitesimal method
- 4. Derivation of energy

Question 1


Find the tension force inside the strain, as shown in the figure below. m and α are known.

A half cylinder is placed on the horizontal plane, and is covered by a strain with length πr and linear density λ . Find the tensile force of the strain at the top of the cylinder.

Question 3


Three cylinders have same mass and radius. Friction coefficient between two cylinders is μ_1 , between cylinder and ground is μ_2 . Find the minimum of μ_1 and μ_2 so that the system is in static.

Question 4

Find θ when the system is in static. Assume I=50cm, M=50g, r=8cm, M=200g.

